Department	Micro Laboratory			Document no	MICLAB - METHOD 033	
Title	TOTAL MICROBIAL PLATE COUNT					
Prepared by:		Date:		Supersedes:		
Checked by:		Date:		Date Issued:		
Approved by:		Date:		Review Date:		

1. SCOPE

This general test method shall be followed in order to determine the total viable bacterial count (Total Plate Count). This procedure applies to all finished products, raw materials, preservative efficacy and environmental testing.

Note: Total Plate Count also refers to the following terms: Total Aerobic Plate Count, Total Aerobic Viable Count and Standard Plate Count.

2. REAGENTS AND MATERIALS REQUIRED

2.1 Tryptone Soya Broth plus 4\% Tween $80(T S B+T)$ or other neutralising broth as predetermined by validation study.
2.2 Tryptone Soya Agar (TSA) or other as predetermined by validation study.
2.3 Sterile petri dishes
2.4 Sterile pipettes
2.5 Sterile stomacher bag
2.6 Filter sterilised 2,3,5 Triphenyl Tetrazolium Chloride 0.5\% (TTC)

3. GENERAL TEST METHOD

3.1 Weigh out 10 g of sample into the stomacher bag.
3.2 Make up to 100 g with TSB + T (or other neutralising broth).
3.3 Homogenise well by placing it in the stomacher for 15-30 seconds or shake well if weighed directly into a bottle. This is a 1 in 10 dilution.
3.4 Plate out in duplicate 1 ml and 0.1 ml of the 1 in 10 dilution.

NOTE: One dilution only is permitted for validated samples where the recovery sensitivity is less than 10 (ie: -1 dilution).

NOTE: If the test method sensitivity is less than 100, then one dilution must be plated out (ie: -2 dilution).
3.5 Pour plates with approximately $15-20$ mls of molten and tempered TSA kept in the water bath ($45-48^{\circ} \mathrm{C}$) - mix gently but thoroughly.

NOTE: Where sample is coarse, grainy or opaque and distinguishing between product and colonies would be difficult, add 1 mL of TTC per 100 mL TSA

Department	Micro Laboratory	Document no	MICLAB - METHOD 033
Title	TOTAL MICROBIAL PLATE COUNT		

before pouring. The TTC will improve differentiation i.e. colonies stain red/pink.
3.6 Allow agar to solidify.
3.7 Incubate plates in an inverted position at $30 \pm 1^{\circ} \mathrm{C}$ for 5 days (or $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} / 3$ days for swabs and preservatives). Plates should be stacked no more than six high.
3.8 Remove plates and count colonies on plates that yield between 25 and 250 colony forming units (cfu) per plate.

NOTE: If the number of colonies per plate is more than 250 , the result should be reported as greater than 250 times the dilution factor. For counts less than 25 , the actual number of colonies on the lowest dilution is known as the estimated count of colony forming units (cfu) per gram and should be reported as the actual number of cfu's per gram.
3.9 Multiply the count by the inverse of the dilution factor.
3.10 Report all results to two significant figures.

Eg: \quad| 1340 | $=1.3 \times 10^{3}$ | | or 1300 |
| ---: | :--- | ---: | :--- |
| 1350 | $=1.4 \times 10^{3}$ | | or 1400 |
| 1370 | $=1.4 \times 10^{3}$ | | or 1400 |

Results for water testing are not recorded in scientific notation.
3.11 Report results as total plate count per gram of sample (or per mL for water or liquid samples).
3.12 If a high bacterial count is expected, in addition to the above test dilution, prepare serial dilutions by adding 1 ml of initial dilution into 9 ml of sterile 0.1% peptone diluent. Plate out dilutions as required using the technique described above.
3.13 All colonies grown must be fully identified according to QO-S00103 - Identification of Contaminants.

